COLLAPSE OF A CYLINDRICAL CAVITY IN A FLUID
LAYER UNDER IMPACT

E. I. Andriankin, V. K. Bobolev,
and A. V. Dubovik

The case of impact on a thin annular fluidlayer with a gas-filled cavity is considered. The
solution of the problem reduces to integrating a system of two first-order ordinary differen-
tial equations. The equations are analyzed qualitatively, and some exact solutions are found.
Cases are noted of pulsation of the cavity, and the influence of counter-pressure and viscosity
is investigated. The experimental results obtained are in agreement with the numerical com~
putations ecarried out herein.

The problem of the collapse of a cavity in a fluid is one of the fundamental problems of hydrodynamics.
It is not only of theoretical but also of practical interest since the collapse of cavities often oceurs in the
lubrication layer of bearings, during cavitation, during testing the sensitivity of liquid explosives to im-
pact, ete. A number of papers [1-8] are devotedtothe analysis of these questions, where the collapse of a
spherical cavity has been investigated. In contrast to these, let us examine the case of impact at a velocity
w, on an annular fluid layer of thickness hy with outer radius a and inner radius b. The solution of this
problem turns out to be somewhat more complex than in the case of the collapse of a spherical bubble
because of the presence of an axial velocity component, a finite radius of the impactor a, and a time-vary-
ing layer thickness.

The hydrodynamic equations describing the collapse of a cavity will be written in a cylindrical coordi-
nate system as
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The layer is considered thin hy << @ so that the pressure depends only on the radius, and the velocity
v ~ hu/a along the z axis turns out to be much less than the radial fluid velocity u. Hence, the equation of
motion in projections on the z axis is satisfied to second-order accuracy in h/a as in boundary-layer theory.

Let us neglect the compressibilities of the fluid, the impactor, and the anvil. Since the mass of the
load m usually turns out to be much greater than the mass of the fluid, then the impactor motion can be
considered uniform, wy =const < 0,down to quite small thicknesses of the impressed layer. This assump-
tion simplifies the mathematical investigation of the problem since the equation of motion of the load
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is satisfied automatically if m —« , and w =w,.
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Compression of the gas in the cavity can be considered adiabatic, and the velocity of sound in the gas
is much greater than the velocity of the cavity boundary r ++ Hence, the pressure within the cavity will be
identical throughout and equal to

Py = Po(b/ 1) (ko] R) @)
Let us first examine the case when the inertial forces predominate over the viscosity forces:
puh? [ pa >1 5)

i.e., let us investigate collapse of a cavity in an ideal fluid.

The flow of an ideal fluid will be irrotational; hence, a particular solution can be found for an arbi-
trary layer thickness in the case wy =const. This is easily established if the equations of motion are written
in the Gromeka-Lamb form.

Let us seek the solution for v in the form

V=092, vy =wolh, h="hy +wet, wo< 0 (6)
then it follows from the continuity equation and utilization of thé boundary condition u (r " t) =r," that
u=—% 4L, g=rr 302 @)
and the pressure is found from (2) and (4):
R e R i) ®

The equation for r, follows from the condition on the outer radius of the impactor p (@, t) =p,. In the
dimensionless quantities

, r,\2 B lwlt ke _ L)“ _ 8pe? 9)
E:(_a-t)’zl:_a“’ T= ho K S_T’ B— a ’7\’— poWoz

this equation is

2EInE(1 — 9% = (1B (b + 87— 381 — 288 + 2t =t {[Zye ] — 1}
| (10)
%:_1i’r’ zy=¢e(1l —7)

The velocity and the position of the cavity radius, i.e.,
Y(0) =1 E(0) =P
will be the initial conditions for (10).

Difficulties in formulating the boundary conditions do not arise in a wave analysis of the impact pro-
cess. The scheme of impact on an incompressible fluid is suitable only with the time t; > a /cj, when the
sound waves interacting repeatedly will cause motion of the whole layer. Within the scope of the theory of
an incompressible fluid it is assumed that ¢y —< , so that t; — 0, but infinite forces must be introduced,
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which will cause a finite flow velocity in an infinitesimal time interval (0, t,).

: However, this velocity turns out to be less than in the side unloading waves.
—l \
Z2n N To find the initial velocity of motion and therefore the quantity ¢, let us
4 \ apply the law of conservation of momentum in projections on the radius to half
m \ the layer, and let us pass to the limit:
&
ﬁ:, a a
lim \ d¢ pdr:pohg ur dr
o 3 ;+ T+
/ > i Substituting the expression for the velocity and the pressure taken from

(7) and (8) into this relationship and taking into account that r,(0) =b, we find

o e T

A\ _B—Bng—1 o weB—1) (11)
7 < ’ ’lp(}— IDB 1 q(O)“‘ ZE]HB
Fig. 6 Using (7}, (8), and (11), the initial velocities of the motion on the outer

u_ and inner u, boundaries of the layer as well as the initial position of the neu-
tral line r° can be determined:

- _ e v woto e _B-1 {
u“(O)-—- 26 >01 u+(0)—28V§’ ( a) - IDB &12)
For the maximum pressure,where (9p/0r) . —r, = 0, we will have
re\* _ (B—1)[381n*8— (1 —BY]
) = 28 (n By (13)

Since B < 1, it then follows from (12) that at the initial instant the discharge within occurs more
rapidly than outside u, 0) > [u_(0)|. It can also be shown from (13) that as t 0 the neutral line is farther
from the center than the position of the maximum pressure, so that there exists a zone within the layer
where the flow is opposite to the pressure gradient. Such a situation facilitates the origination of instability.

Let us investigate the behavior of the solution of the system (10} in two cases when the pressures
within p and outside p_ the cavity equal zero and when there exists an internal pressure in the cavity but
p- =0, and moreover, y =2. Inthese cases one first~order equation can be obtained from the systern (10):

. Age
24 nE T — (1 —8) (35 — (W + 1% + 28 lmE — 25, ¢ ®) =% ®) (14)
In the case of no counterpressure (A =0) the field of integral curves of (14) is pictured in Fig. 1. The

¥ axis is a singular solution, and the ¢ axis is the isocline of the infinities. The isocline of the zeroes for
A =0

282Ing AR\t
b=t (384 27 - ) (15)

intersects the { axis at two singular points. The point ¢ =0, ) =0 is a node, and the integral curves are
tangent to the ¥ axis according to the law

Y= A/VTIng|, A = const (16)
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The point § =1, 3 =0 is a saddle point with the slopes of the separatrices Kl 5 =1/2(1 % ‘[3) so that
Ky > (d3y/d &), and hence, the separating curve passes below the isocline of zeroes (dashes in Fig. 1). Con-
sidering ¢ (£) a known function, we can find from (10)

In(l—1) = S q"; 17)
B

It is seen from (16) that this integral converges, and therefore, collapse of the cavity occurs within
the finite time 7} < 1.

Numerical integration of (10) for the case f =0.25 and A =0 yielded Tk ®~ 0.517 respectively (see
curve 1 in Fig. 2). Presented in this same Fig. 2 are the computed curves for A =0.313, curve 3, and
A =0.078, curve 4. I is seen from the behavior of the curves that the counterpressure turns out to be sub-
stantial at the end since the gas pressure p ~ (hyb?/hr,?)Y rapidly rises for small r_.

At the time of collapse the velocity u, grows infinitely; however, the integral of the energy E con-
verges:

, 1
U -~ == 8
* . Vor,

E~lim\ p,(u?+v?)rdr(r,—0)

S e
h A0

The flow and its associated energy dissipation rebuild after collapse.

Let us now examine another case (p_ =0,y =2) for which p,_ > 0 and the gas in the cavity plays the part
of an elastic piston. If AB%2> K, which is determined from the condition

K, = max [382 (1 — E) + 2% In E]

that the radicand in (15) is negative in the range 0 < £ < 1, then there are no singularities in the strip
0= £ = 1; the integral curves intersect the £ axis with the infinite derivative (¢ ~ v £—£4) and approach
the line £ =1 (Fig. 3) with the asymptotic

W = —AB*In (1 — E) + const (18)

The radius of the cavity diminishes initially (the dashes denote the line of the initial conditions) to the
value V£, (B) but then again grows (since P becomes negative) tending to unity, which physically denotes
splashes of the whole fluid. The splashing occurs for a finite layer thickness at the time 7 k< 1 since the
integral (17) converges as £ — §,.

If AB%< K 4, then the behavior of the integral curves is complicated substantially and is indicative of
an oscillatory mode. In fact, let AB2 be small; then the isocline of zeroes i, intersects the £ axis, the iso-
cline of the infinities, at two singularities £, and £, respectively located close to £ =0 and £ =1. Using
this in the series expansion of the right side of (14) in the neighborhood of the singularities, it is easy to

establish’that the singularity (£ ;, 0) is a focus and (§,, 0) is a saddle point with slopes (di,/d&), & + 1of
the separatrices. The isocline of zeroes at the point (0, £§,) has the slope (di,/dé),~ 2/(1— £5)2.

The asymptotic of the integral curves for £-~ 1is given by (18).
Near the focus,(14) reduces to

dp _SAEap -
E“‘ 1PE,11DEI Y E—EIJITA
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It follows from its solution

LEllS] epKEp, 40, K0

7t~ cos® @
that the integral curves issue from the focus as is pictured in Fig. 4. If is seen from Fig. 4 that one or
more oscillations of the cavity occur before the splashing depending on whether the initial condition be~
longs to any curve of the focus (section 3~4 on the line of initial conditions, dashed in Fig. 4) or not.

Splashing occurs during 7y < 1 for all solutions excepting the separatrix 5-2. Approaching the ¥
axis along it, the integral (17) diverges ( ~ & —£,), and T~ 1. It is hence interesting that the radius of the
gas cavity tends to the limit at a finite time of compression. The pressure in the problem without a cavity
[6. 9] rises infinitely as h — 0 according to the law

p~g B °2[1 — (‘;‘ﬂ

but for y =2 and r, — Tk the pressure in the gas cavity also rises proportionately to

po(B%ho [ i)Y ~ 1/ h?
hence, this case is also possible.

In the casesy = 2,where the system (10} does not reduce to one equation, the behavior of the solution
can be assessed from a comparison with the particular cases (14} already examined.

For example, it is evident that if 8 is close to one, then splashing will occur under impact since a
finite rise in pressure during compression in a finite time can extrude a sufficiently thin layer of fluid.

It has been found by a numerical computation for the case B =0.9, & =0.1,and v =1.4, for example, that
T ~0.4 at the time of the splash.

If oscillations of the cavity occurred and jts radius turned out to be sufficiently small, then forvy < 2
it can diminish to zero since for finite ry the pressure in the fluid,which rises according to the law ~h-2,
would become greater than the pressure in the gas ~h™Y. This case is analogous to the problem without
counterpressure A =0. Hence, collapse occurs for a finite layer thickness. Majorizing the asymptotic for
¢ as 7 — T in the form

£
s __ 40 dE .
W“A,\{’ln£>A
Eo

d{ _— _E"- —— 1 — Z=
mg_AmIm&{,A ABY (1 — 1)

Al S

it is easy to establish that the integral (17) converges, and therefore 7y < 1. These modes are observed
even in a numerical computation (the solid line in Fig. 5). For y > 2 and sufficiently small ri a rapid rise
in pressure in the cavity results in splashing.

A computation for the casey =3, 8 =0.25, € =0.05 showed that up to the time 7 &~ 0.23 the cavity has
almost collapsed but then starts to expand and splashing occurs at 7 &~ 0.5.
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Now, let us consider viscous fluid flow when the inertial forces are small and the ratio (5) becomes
less than unity. It follows from the equation of motion that

u=f(r7 t)”l(1 _TI)

N=2z/k, h="hy+ wyt (19)
Using the continuity equation and the boundary condition v (h, t) =w,, we find
f:_3_ZO_r_ GTq, v=wm?(3—~2n) (20)
Let us satisfy the condition on the cavity boundary r =r (t) inthe mean:
L
r) = S u(r,t)dn 21)
(1}

thereby averting a cumulative splash at 7 =1/2,to which the parabolic velocity profile reduces. It follows
from (10) and (21) that

9= r+r+' + 1./2 ’w07'+2[ h (22)
Substituting (19), (20), and (22) into the equation of motion,we find
2 3 2,2 7b2h,
p:h_t;[_w%_r)_sqln;:]jzm(#)* @3)

Using the boundary condition p (#, t) =p; and transforming to dimensionless quantities, we obtain an
equation for the cavity radius:

(- r)lng% =1+EmE—E+8(1 —7) {1— [WE‘W]Y}

0)=8, d=poB (L)

(24)

This equation is easily integrated in the absence of counterpressure:

1+B8lnB—B

=¥t

The graph of this function is pictured in Fig. 2 (curve 2). It is also easy to find the solution under the
condition of no fluid flowing to the outside from (22), i.e., when u (g, t) =0:
1-—8

T=1—F=

1—E

To a certain extent this solution characterizes the blocking role of the viscosity.

An increase in viscosity diminishes the fluid discharge at a constant pressure gradient. However, let
us note that under impact on a viscous layer the pressure rises [6, 9] as u increases so that the mass
balance is conserved.

The field of integral curves of (24) is pictured in Fig. 6. The 7 =1 axis is a singular solution, and the
£ =0 and £ =1 axes are isoclines of the infinities. The isoclines of zeroes (dashed in Fig. 6) intersect the
isoclines of infinities at three singularities. Let us note that it is convenient to assume, say, ¥ = 1.5 forthe
image of the isocline of zeroes; then a quadratic equation is obtained in 1— 7. The singularity 7 =1, £ =1
is a saddle point near which the solution is

(t—nh const

(=8 ="—t+1=

At the singularity 7 =1, £ =0, a node, the integral curves merge with the asymptotic
E=01—7" /B8, n=0CB—7) /v

which has a zero tangent for ¥ < 2. The kind of singularity 7 =1— 8, £ =1 is determined by the law A =1—
4/y8B% I A < 0,then the singularity is a focus. The case A>0 (a saddle-point singularity) is less prob-
able since & is usually small and B < 1.
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Fig. 11

Expanding the coefficients of (24) in series near £ =1+y, 7 =1—p5 +x, we find
dy [ dz = yp* — yBdz [ y

Integrating this equation, we easily establish that the focus is twisted. Thus, for example, for small

6 we obtain
) A t
rzzmexp( — ¢B% arc tg %),A>O

At the beginning of the motion the cavity is always diminished since (d£/d 1), < 0. It is seen from the
behavior of the integral curves that complete collapse occurs when the solution (curve 1) enters the node.
For large cavity radii when § is close to unity, the solution can belong to a focus (curve 2), and therefore,
splashing will ocecur for 7 < 1. For the case f =0.9, § =0.695 a computation showed that the splashing
already occurs at 7 =0.142. This does not contradict the physics of the phenomenon since as b — a and for

finite h the viscous drag ~ uwya (@~b)/h® turns out to be less than the counterpressure ~hi~7pi=27,
Collapse oceurs because of the rapid growth ~h™ of the maximum pressure in the fluid.

As computations showed and as has been observed in tests, the influence of counterpressure on the
velocity of collapse in the viscous mode (in contrast to the inertial) is quite substantial (curves 5, 6, and
2 in Fig. 2, calculated for 6 =0.695, 6 =0.0865, and § =0). This is easily understood since the viscous drag
diminishes the velocity of collapse, and hence, for cavity radii r 4 equal to the inertial solution, the thick-
ness of the viscous layer turns out to be less.

The case when the inertial and viscous forces are of the same order is sometimes interesting. Let
us assume that the velocity profile is hence parabolic. I is hence possible to utilize (19) and (20) to evalu-~
ate the derivatives du/dt, 8%u/9r? 8p/dr, and 8%u/8z® in (2). Thenaveraging the equation of motion with
respect to z we obtain

LI —7) 2 = £.2(1—) [+ ¥)* — & + 2%y InE
+280 =0 e | — 1) — g L — &+ (b + HIn]

_1;)

(25)

- %4_ . R = Pohoy!wol
In the limit when inertial forces can be neglected, this equation automatically goes over into (24).

However, the motion of an ideal fluid is obtained only approximately as v — 0. This is also conceivable

since the velocity profile was considered independent of the Reynolds number R from the very beginning.

In fact, the boundary layer grows gradually. Hence, the solution of (10} at the time when the boundary layers

on the impactor and the anvil are joined [9] can be taken as the initial condition for (25).

Now, let us describe some experimental results. The method of conducting the experiment has been
expounded in detail in [10]. The radius of the air cavity compressed by the impact of a load in a fluid
layer of given thickness was measured by a photographic method. The investigated fluids were nitroglye-
erinep)=1.6 g /cm?® andp =0.3 poise and a solution of glycerine in water p; =1.24 g/ cm® and i =3 poise.
The impact velocity of a5-kgfload varied between 1 and 4 m/sec. The thicknesses of the fluid layers were
0.25 —1.0 mm, and the radius of the impactor was 10 mm. The altitudes of the 5- and 10-mm-diameter air
cavities corresponded to the thicknesses of the fluid layers.

Values of the experimental results averaged over several tests in parallel are superimposed by circles
in Fig. 5 in the coordinates V£, T for the case B =1/16, € = 0.05, A =0.313,and 6 = 0.695. A comparison
with a theoretical computation (solid line) shows good agreement even during oscillation (pulsation) of the
cavity.
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Experiment is also compared with a computation for the case £ =0.25, € =0.05, X =0.313, §= 0.695
in Fig. 7. The theory can be in good agreement with experiment if the initial instant is chosen from the
condition that the velocities in the computation and the experiment are equal at 7,=0.12, from which the
real process starts to be described by the hydrodynamic theory of impact.

Theory and experiment on the initial section of the curve of cavity collapse up to the beginning of
oscillations are compared in Fig. 8 for & =0.025, A =7.8+10~2 and § =8.7 - 10~%, with curve 1 for g =0.25
and curve 2 for g =0.0625.

Test data for § =0.25, § =4.0 + 1.5, and different values of the parameter A which characterizes the in-
ertial force, A =0.312 (point 1), A =0.555 (point 2), and A =1.25 (point 3) are presented in Fig. 9 (upper part
of the graph). The experimental results lie well along one curve. This is indeed natural since the counter-
pressure sharply hinders motion of the cavity boundary only in the concluding stage of collapse.

Presented in the same Fig. 9 (lower part of the graph) are test data for  =0.25, A =0.43 +£0.12,and
different values of the parameter v characterizing the influence of viscosity. The different slope of the
two groups of tests can be explained by the predominating influence of the inertial forces on the lower curve
(the points 5), where the parameter » ~0.1 in (25) is still sufficiently small as compared with the other co-
efficients. As the influence of the viscosity rises, the slope of the collapse curves diminishes (the group of
points 5 where v&1).

Also noticed in the tests was the dependence of the beginning of the origination of instability on the
magnitude of the Reynolds number Rx. This fact can be explained by the perturbing influence of the growing
boundary layer on the inertial velocity profile.

Pictured in Fig. 10 is the experimental dependence of the Reynolds number Ry = p,Uxhx*/u at the time
of the origination of instability (the formation of a cumulative jet on the cavity boundary) as a function of the
parameter

we=ife, VR ~8,/hs R = poati fi
where 84 is the boundary-layer thickness.

The character of the collapse of a cylindrical cavity for B =0.0625, € =0.05, and the impact velocity
wy=2 m/sec can be observed in Fig. 11, where a series of frames from an exposure by a ZhLV-2 time
magnifier is presented (the numbers under the frames denote the time in microseconds from the beginning
of the motion of the cavity boundary).

Let us note the origin of instability (a cumulative jet) and the presence of cavitation bubbles in the
fluid, which possibly originate in the first instants of impact because of tension of the fluid during interac-
tion of the side unloading waves. The character of the flow near the neutral line opposite to the pressure
gradient is also influential in this same direction.

The authors are grateful to A. M. Kogan and L. V. Mostovaya for performing the computations.
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