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IN A F L U I D  

The case of impact on a thin annular f lu id layer  with a gas-f i l led cavity is considered. The 
solution of the problem reduces  to integrating a sys tem of two f i r s t - o r d e r  ordinary differen-  
t ial  equations. The equations are  analyzed qualitatively, and some exact solutions are  found. 
Cases are  noted of pulsation of the cavity, and the influence of coun te r -p re s su re  and v iscos i ty  
is investigated. The experimental  resu l t s  obtained are  in agreement  with the numer ica l  com-  
putations ca r r i ed  out herein. 

The problem of the collapse of a cavity in a fluid is one of the fundamental problems of hydrodynamics.  
It is not only of theore t ica l  but also of p rac t ica l  in teres t  since the collapse of cavit ies often occurs  in the 
lubricat ion layer  of bear ings,  during cavitation, during test ing the sensit ivity of liquid explosives to im-  
pact,  etc. A number  of papers  [1-8] are  devo ted to the  analysis  of these questions, where the collapse of a 
spher ical  cavity has been investigated. In contras t  to these, let us examine the case of impact at a veloci ty 
w 0 on an annular fluid layer  of thickness h 0 with outer radius a and inner radius b. The soh t ion  of this 
problem turns  out to be somewhat more  complex than in the case of the collapse of a spherical  bubble 
because of the p resence  of an axial veloci ty  component, a finite radius of the impactor  a ,  and a t i m e - v a r y -  
ing l ayer  thickness.  

The hydrodynamic equations descr ibing the collapse of a cavity will be wri t ten in a cylindrical  coord i -  
nate sys tem as 

o~ t o,~ O, OV=O (i~ 
Oz ~ r Or 0--~ 

au ~ _ u O U _ ~ v  au I a p  [~ a~u (2) 
o--i" Tr" Oz Oo Or :[ po az~ 

The layer  is considered thin h 0 << a so that the p r e s s u r e  depends only on the radius,  and the veloci ty 
v ~ hu/a along the z axis turns  out to be much less than the radial fluid veloci ty  u. Hence, the equation of 
motion in project ions  on the z axis is sat isf ied to second-o rde r  accuracy  in h / a  as in boundary- layer  theory~ 

Let us neglect  the compress ib i l i t ies  of the fluid, the impactor ,  and the anvil. Since the mass  of the 
load m usually turns  out to be much g rea t e r  than the mass  of the fluid, then the impactor  motion caa be 
considered uniform, w 0 = const < 0, down to quite small  thicknesses  of the impres sed  layer.  This assump-  
tion simplif ies the mathematical  investigation of the problem since the equation of motion of the load 

yi-  = --~ ~ pr dr, h ---- ho + w dt 
b 0 

(3) 

is sat isf ied automatical ly if m -~ ~o, and w =w 0. 
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C o m p r e s s i o n  of  the  gas  in the  cav i ty  can be cons ide red  adiabat ic ,  and the  ve loc i ty  of sound in the gas 
is much g r e a t e r  than the  ve loc i t y  of the cav i ty  boundary  r + .  Hence,  the p r e s s u r e  within the cav i ty  will  be 
ident ica l  th roughout  and equal  to  

P+ = P0 (b [ r+) ~" (ho I h)" (4) 

Le t  us  f i r s t  examine  the  c a s e  when the  ine r t i a l  f o r c e s  p r e d o m i n a t e  ove r  the  v i s c o s i t y  f o r c e s :  

puh  ~ / I~a > I (5) 

i .e . ,  let  us inves t iga te  co l lapse  of a cav i ty  in an ideal  fluid. 

The  flow o f  an idea l  fluid wil l  be i r ro t a t iona l ;  hence,  a p a r t i c u l a r  solut ion can be found fo r  an a r b i -  
t r a r y  l a y e r  th i cknes  s in the  c a s e  w 0 = const .  This  is ea s i ly  e s tab l i shed  if  the equat ions  of  mot ion a r e  wr i t t en  
in the  G r o m e k a - L a m b  fo rm.  

Le t  us seek the  solut ion fo r  v in the  f o r m  

v =  VoZ, vo = wo / h, h = ho 4-wot ,  Wo <~ O (6)  

then  it fol lows f r o m  the cont inui ty  equat ion and ut i l iza t ion of the boundary  condit ion u (r+, t) = r+" that  

vor q vo 2 i f )  U = - - T - ~ T ,  q=r+r+ '~ -  2 r+ 

and the  p r e s s u r e  is found f r o m  (2) and (4): 

- -  ~ . r _j_ " - - r e  ~ p so" (r ~ __ r ,~)  __ q I n - -  r+2 
p0 T r +  2 Fpot~+] t h /  (8) 

The equat ion for  r+  fol lows f r o m  the  condit ion on the  ou te r  r ad ius  of  the i m p a c t o r  p (a, t) =P0. In the 
d i m e n s i o n l e s s  quant i t ies  

= z l = T ,  ~ =  , S = T ,  ~ =  powo ~' 

th i s  equat ion  is 

. ~ .  "c t } 

d E  _ _  ~P z 1 : - = s  ( 1  - -  %') 
d~" t-- '~ ' 

(10) 

The  ve loc i t y  and the  pos i t ion  of the cav i ty  rad ius ,  i .e. ,  

, (0 )= ,0 ,  ~(o)=p 

wil l  be the  ini t ial  condi t ions  for  (10). 

Diff icul t ies  in fo rmu la t i ng  the  b o u n d a r y  condi t ions  do not a r i s e  in a wave ana lys i s  of the impac t  p r o -  
ce s s .  The  s c h e m e  of  impac t  on an i n c o m p r e s s i b l e  fluid is sui table  only with the t ime  t o >> a / c0 ,when  the  
sound waves  i n t e r ac t i ng  r epea t ed ly  will  cause  motion of the  whole  layer .  Within the  scope of the theo ry  of 
an i n c o m p r e s s i b l e  fluid it is  a s s u m e d  that  c o ~ :o, so that  t o ~ 0, but infinite f o r c e s  mus t  be in t roduced,  
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which  wi l l  cause  a finite flow ve loc i ty  in an in f in i t e s imal  t ime  in te rva l  (0, t0). 
However ,  th is  ve loc i ty  t u r n s  out to  be l e s s  than in the side unloading waves .  

To find the  ini t ial  ve loc i t y  of  mot ion and t h e r e f o r e  the quant i ty  ~0, let us 
apply the law of  c o n s e r v a t i o n  of  m o m e n t u m  in p r o j e c t i o n s  on the rad ius  to hal f  
the l ayer ,  and let us  p a s s  to  the l imi t :  

r r176 i lim , d t  ~ p dr = poh ur  dr  

Subst i tut ing the e x p r e s s i o n  fo r  the  v e l o c i t y  and the  p r e s s u r e  t aken  f r o m  
(7) and (8) into th is  r e la t ionsh ip  and tak ing  into account  tha t  r+(0) =b, we find 

~2o - -  ~ - -  ~ i n  ~ - -  t woa(B  - -  t)  ( 1 1 )  
In ~ ' q (0) -- Z s In 

Fig. 6 Using (7), (8), and (ii), the initial velocities of the motion on the outer 

u_ and inner u+ boundaries of the layer as well as the initial position of the neu- 

tral line r ~ can be determined: 

u ( O ) =  F~162176 ~ 0 u+(O) wo,o (_~)2 ' . ~ - I  
- 2 ~  , 2 ~ V 7 '  = 1 - ~  (12)  

F o r  the  m a x i m u m  p r e s s u r e , w h e r e  ( 0 p / S r ) r  = r .  = 0, we wil l  have 

(~-)~ : (~ -- t) [3 ~ l n ~ - -  ( t - -  ~ ) 2 1 2  ~ (In ~)s (13) 

Since fl < 1, it then fol lows f r o m  (12) tha t  at the ini t ial  ins tan t  the  d i s c h a r g e  within o c c u r s  m o r e  
rap id ly  than outs ide  u+(0) > lu_(o)l .  It can a lso  be shown f r o m  (13) tha t  as  t --*0 the  neu t r a l  line is f a r t h e r  
f r o m  the  c e n t e r  than  the pos i t ion  of  the m a x i m u m  p r e s s u r e ,  so tha t  t h e r e  ex is t s  a zone within the l a y e r  
w h e r e  the  flow is oppos i te  to  the p r e s s u r e  gradient .  Such a s i tua t ion  fac i l i t a t e s  the o r ig ina t ion  of  ins tabi l i ty .  

Le t  us  inves t iga te  the  behav io r  of the  solut ion of the s y s t e m  (10) in two c a s e s  when the  p r e s s u r e s  
within p and outs ide  p_ the  cavi ty  equal z e r o  and when t h e r e  ex is t s  an in te rna l  p r e s s u r e  in t h e  cav i ty  but + 
p_ =0, and m o r e o v e r ,  T =2. In t he se  c a s e s  one f i r s t - o r d e r  equat ion can be obta ined f r o m  the  s y s t e m  (10): 

In the  c a s e  of no c o u n t e r p r e s s u r e  (X =0) the f ield of  i n t eg ra l  c u r v e s  of (14) is p i c t u r e d  in Fig.  1. The  
r axis  is a s ingu la r  solution,  and the ~ axis  is the  i soc l ine  of the  inf ini t ies .  The  i soc l ine  of the z e r o e s  f o r  
X = 0  

i n t e r s e c t s  the  ~ axis  at two s ingu la r  points .  The point  ~ =0, r =0 is a node, and the  i n t eg ra l  c u r v e s  a re  
tangent  to  the  ~b axis  a c c o r d i n g  to the law 

= A / V ]  In~l , A = cons~ (16) 
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The point ~ = 1, ~b =0 is a saddle point with the slopes of the separa t r i ces  K1, 2 =1/2 (1 * ~f3) so that 
K2 > (dr and hence, the separat ing curve passes  below the isocline of ze roes  (dashes in Fig. 1). Con- 
s ider ing r (~) a known function, we can find f rom (10) 

It is seen f rom (16) that this integral  converges,  and therefore ,  collapse of the cavity occurs  within 
the finite t ime ~ k < 1. 

Numerical  integration of (10) for  the case fl =0.25 and )~ =0 yielded T k ~ 0.517 respect ively  (see 
curve 1 in Fig. 2). P resen ted  in this same Fig. 2 are  the computed curves  for X =0.313, curve 3, and 
X =0.078, curve 4. It is seen from the behavior of the curves  that the counterpressure  turns  out to be sub- 
stantial at the end since the gas p r e s s u r e  p ~ (h0b2/hr+2)T rapidly r i ses  for small  r+. 

At the t ime of collapse the velocity u+ grows infinitely; however, the integral  of the energy E con- 
ve rges :  

u+' E ~--~ lim po(u2-b, v2)rdr(r+---~O) 
.+ V1ET:.+ ' 

r+ 

The flow and its associa ted energy dissipation rebuild after collapse. 

Let us now examine another case  (p_ =0, 7 =2) for which p+ > 0 and the gas in the cavity plays the par t  
of an elast ic  piston. If  Xfl 2 > K , ,  which is determined f rom the condition 

K , - ~  max [3~ ~ (t --  ~) ~- 2~ a In ~] 

that the radicand in (15) is negative in the range 0 < ~ < 1, then there  are  no singulari t ies in the strip 
0<_ ~ <_ 1; the integral  curves  in tersect  the ~ axis with the infinite derivative (r ~ 4 ~ - , )  and approach 
the line ~ = 1 (Fig. 3) with the asymptot ic  

~2 __~ _ ~  In (1 --  ~) ~- const (18) 

The radius of the cavity diminishes initially (the dashes denote the line of the initial conditions) to the 
value ~/~, (fl) but then again grows (since r becomes negative) tending to unity, which physical ly denotes 
splashes of the whole fluid. The splashing occurs  for a finite layer  thickness at the t ime ~k < 1 since the 
integral  (17) converges  as ~ --* ~, .  

If X p2 < K , ,  then the behavior  of the integral curves is complicated substantially and is indicative of 
an osci l la tory  mode. In fact, let Xfl2 be small;  then the isocline of ze roes  ~b 0 in tersec ts  the $ axis, the i so-  
cline of the infinities, at two singulari t ies  ~ I and } 2 respect ively located close to } =0 and } =1. Using 
this in the ser ies  expansion of the right side of (14) in the neighborhood of the singulari t ies,  it is easy to 
establ ish ' that  the singulari ty (~ 1, 0) is a focus and (} 2, 0) is a saddle point with slopes (dr / d~) 2 ~ e: 1 of 
the separa t r ices .  The isocline of ze roes  at the point (0, ~ 2) has the slope (dr 2 ~ 2 / ( 1 -  ~2) 2. 

The asymptotic of the integral  curves  for ~-~ 1 is given by (18). 

Near  the focus,(14) reduces  to 

d, 3 A + ~1r 
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It  fol lows f r o m  i ts  so lut ion 

rZ .~ A~ll In ~1 
cos~ (P exp K~IqD, A ~ 0, K ) 0 

that the integral[ curves issue from the focus as is pictured in Fig. 4. It is seen from Fig. 4 that one or 

more oscillations of the cavity occur before the splashing depending on whether the initial condition be- 

longs  to  any c u r v e  of the  focus  (sect ion 3-4  on the  l ine of  ini t ial  condi t ions ,  dashed  in Fig.  4) o r  not.  

Sp lash ing  o c c u r s  dur ing  T k < 1 fo r  a l l  so lu t ions  except ing  the  s e p a r a t r i x  5-2 .  Approach ing  the ~, 
axis  a long it,  the  in t eg ra l  (17) d i v e r g e s  (~b ~ ~ - }  2), and ~ 'k- -  1. It is  hence  i n t e r e s t i n g  tha t  t he  rad ius  of  the  
gas  cav i ty  t ends  to  the  l imi t  at  a f ini te  t i m e  of  c o m p r e s s i o n .  The  p r e s s u r e  in the p r o b l e m  without  a cav i ty  
[6, 9] r i s e s  inf in i te ly  as  h - -  0 a c c o r d i n g  to the law 

3 P~176 I ( + ) 3  t P ~  4 h~ i - -  

but  fo r  T =2 and r+ -~ r k the p r e s s u r e  in the gas  cav i ty  a l so  r i s e s  p r o p o r t i o n a t e l y  to 

Po (b~ho [ r~h) ~ ~ t / h 2 

hence ,  th i s  c a s e  is  a l so  poss ib le .  

In the  c a s e s  T ~ 2 ,whe re  the  s y s t e m  (10) does  not r educe  to  one equation,  the  b e h a v i o r  of  the solut ion 
can be  a s s e s s e d  f r o m  a c o m p a r i s o n  with the  p a r t i c u l a r  c a s e s  (14) a l r e a d y  examined .  

For example, it is evident that if fi is close to one, then splashing will occur under impact since a 

finite rise in pressure during compression in a finite time can extrude a sufficiently thin layer of fluid. 

It has been found by a numerical computation for the case fi =0.9, g =0.l,and ~/ =!.4,for example, that 
I- ~ 0.4 at the time of the splash. 

If oscillations of the cavity occurred and its radius turned out to be sufficiently small, then for 7 < 2 

it can diminish to zero since for finite r k the pressure in the fluid,which rises according to the law ~ h -2, 

would become greater than the pressure in the gas ~ h -7 . This case is analogous to the problem without 

eounterpressure h =0. Hence, collapse occurs for a finite layer thickness. Majorizing the asymptotic for 
r as ~- --~ ~'k in the form 

~o ~o 

it is  e a s y  to  e s t a b l i s h  that  the  in t eg ra l  (17) c o n v e r g e s ,  and t h e r e f o r e  T k < 1. T h e s e  modes  a r e  o b s e r v e d  
even in a n u m e r i c a l  computa t ion  (the so l id  l ine in Fig.  5). F o r  7 > 2 and suff ic ient ly  smal l  r k a rap id  r i s e  
in p r e s s u r e  in the  cav i ty  r e s u l t s  in sp lashing .  

A computa t ion  fo r  the  c a s e  7 =3, fl =0.25,  ~ =0.05 showed that  up to  the  t i m e  ~ ~ 0.23 the  cavi ty  has  
a lmos t  co l lapsed  but then  s t a r t s  to  expand and sp lash ing  o c c u r s  at T ~ 0.5. 
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Now, let us  cons ide r  v i s c o u s  fluid flow when the ine r t i a l  f o r c e s  a r e  sma l l  and the ra t io  (5) b e c o m e s  
l e s s  than  unity. It fol lows f r o m  the equat ion of  mot ion that  

u = l ( r ,  t )~l( t  --~1) 

~ l = z / h ,  h = h o + w o t  
(19) 

Using  the cont inui ty  equat ion and the  boundary  condi t ion v (h, t) =w 0, we find 

3 wor 6 q (20) 
f = h + - 7 - '  v=W~ 2"~1) 

Le t  us sa t i s fy  the condi t ion on the  cav i ty  boundary  r =r+(t) in the  mean:  

1 
r , '= I u(r.,t)d~l (21) 

0 

t h e r e b y  ave r t ing  a cumula t ive  sp lash  at 77 = l / 2 , t o  which the  pa rabo l i c  ve loc i t y  p ro f i l e  r educes .  It follows 
f r o m  (10) and (21) that  

q = r+r+'~ I]2 wor+2]~ h (22) 

Subst i tut ing (19), (20), and (22) into the  equat ion of  motion, we find 

2~ [3wo(r*--rP) __ 6qln-L-  r ] ~ .:/b~ho ~-~ (23) 

Using  the  boundary  condi t ion p (a, t) =P0 and t r a n s f o r m i n g  to  d i m e n s i o n l e s s  quant i t ies ,  we  obtain an 
equat ion fo r  the  cav i ty  rad ius  : 

[ ] l  ~" 
(1 ~)In~ d~ %1 q- ~ln~ ~ + 6 ( 1  _:,~)8 {1-- 

(24) 
. ~ ( 0 ) = ~ ,  6 =  3~lw01 

This  equat ion is ea s i ly  i n t eg ra t ed  in the  absence  of c o u n t e r p r e s s u r e :  

The  g raph  of  th i s  funct ion is  p i c t u r e d  in Fig.  2 (curve  2). It is a l so  easy  to  find the  solut ion under  the  
condi t ion of  no fluid f lowing to  the outs ide  f r o m  (22), i .e . ,  when u (a, t) =0: 

To  a c e r t a i n  extent  th i s  solut ion c h a r a c t e r i z e s  the b locking  r o l e  of the  v i scos i ty .  

An i n c r e a s e  in v i s c o s i t y  d imin i shes  the  fluid d i s c h a r g e  at a cons tant  p r e s s u r e  gradient .  However ,  le t  
us  no te  tha t  under  impac t  on a v i s c o u s  l a y e r  the p r e s s u r e  r i s e s  [6, 9] as  ~z i n c r e a s e s  so that  the m a s s  
ba l ance  is conse rved .  

The  field of i n t e g r a l  c u r v e s  of  (24) is p i c tu red  in Fig.  6. The T =1 axis  is a s ingu la r  solution,  a n d t h e  
=0 and ~ =1 axes  a r e  i soc l i ne s  of the  inf ini t ies .  The  i soc l ines  of  z e r o e s  (dashed in Fig. 6) i n t e r s e c t  the  

i s o c l i n e s  of  inf in i t ies  at t h r e e  s ingu la r i t i e s .  Let  us note  tha t  it is  convenient  to  a s s u m e ,  say,  7 = 1.5 f o r t h e  
i m a g e  of  the  i soc l ine  of  z e r o e s ;  then a quadra t i c  equat ion is obta ined in 1 -  T. The  s ingu la r i ty  T = 1, ~ = 1 
is a saddle  point  n e a r  which  the solut ion is 

(i -- v)*/' const 
(1 - - , D  ~ - ~o ~- i - ~  

At the  s ingu la r i t y  T = 1, ~ =0,  a node,  the in t eg ra l  c u r v e s  m e r g e  with the  a s y m p t o t i c  

wh ich  has  a z e r o  tangent  f o r  T < 2. The  kind of  s ingu la r i ty  T = 1 -  fi,  ~ = 1 is  d e t e r m i n e d  by the  law A = 1-- 
4 / 7 6 f l  2. If A < 0, then the  s ingu la r i ty  is a focus .  The  case  A >  0 (a sadd le -po in t  s ingular i ty)  is l e s s  p r o b -  
able s ince  6 is usua l ly  sma l l  and /3 < 1. 
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Fig. ii 

Expanding the coefficients of (24) in series near ~ =l+y, 7 =i-/? +x, we find 

dy / dx -~- 7~%3 --  7~6x l Y 

Integrating this equation, we easily establish that the focus is twisted. Thus, for example, for small 
we obtain 

r~ A ( - -  tg > 0 

At the beginning of the motion the cavity is always diminished since (d~/d T)+ < 0. It is seen from the 
behavior of the integral curves that complete collapse occurs when the solution (curve i) enters the node. 

For large cavity radii when /3 is close to unity, the solution can belong to a focus (curve 2), and therefore, 

splashing will occur for ~- < i. For the case fl =0.9, 6 =0.695 a computation showed that the splashing 

already occurs at ? =0.142. This does not contradict the physics of the phenomenon since as b --~ a and for 
finite h the viscous drag ~ ~w0a ( a -b ) /h  3 turns  out to be less  than the coun te rpressure  ~ h i- ' /b1-23 ' . 
Collapse occurs  because of the rapid growth ~ h -3 of the maximum p r e s s u r e  in the fluid. 

As computations showed and as has been observed in tes t s ,  the influence of coun te rp ressu re  on the 
veloci ty of collapse in the viscous mode (in contras t  to the inertial) is quite substantial (curves 5, 6, and 
2 in Fig. 2, calculated for 6 =0.695, 5 =0.0865, and 6 =0). This is easi ly understood since the viscous drag 
diminishes the veloci ty  of collapse, and hence, for cavity radii r+ equal to the inert ial  solution, the thick-  
ness  of the viscous layer  turns  out to be less .  

The case when the inert ial  and viscous  forces  are  of the same order  is somet imes  interest ing.  Let 
us assume that the veloci ty profi le  is hence parabolic.  It is hence possible to utilize (19) and (20) to evalu-  
ate the der ivat ives  0 u / 0  t, 02u/0  r 2, 0 p / 0  r, and 02u/0  z 2 in (2). Then averaging the equation of motion with 
respec t  to z, we obtain 

-~Ii-~+(~+~)ln~] 
24 ' poho [ Wo I 

In the l imit  when inertial  forces  can be neglected, this  equation automatical ly goes over  into (24). 
However,  the motion of an ideal fluid is obtained only approximately as v--~ 0. This is also conceivable 
since the veloci ty  profi le  was considered independent of the Reynolds number  R f rom the ve ry  beginning. 
In fact, the boundary layer  grows gradually.  Hence, the solution of (10) at the t ime when the boundary Iayers  
on the impactor  and the anvil a re  joined [9] can be taken as the initial condition for (25). 

Now, let us descr ibe  some experimental  resul ts .  The method of conducting the experiment  has been 
expounded in detail in [10]. The radius of the a i r  cavity compressed  by the impact of a load in a fluid 
layer  of given thickness was measured  by a photographic method. The investigated fluids were  ni t roglyc-  
e r ineP0=l .6  g / c m  3 andg =0.3 poise and a solution of glycer ine in water  P0 =1.24 g / c m  3 and~ =3 poise. 
The impact  veloci ty  of ah -kg f load  var ied  between 1 and 4 m/see .  The th icknesses  of the fluid l ayers  were  
0 .25 -1 .0  mm, and the radius of the impactor  was 10 mm. The altitudes of the 5-  and 10 -mm-d iame te r  a ir  
cavit ies corresponded to the th icknesses  of the fluid layers .  

Values of the experimental  resul ts  averaged over severa l  tes ts  in paral le i  are  super imposed by c i rc les  
in Fig. 5 i n t h e  coordinates  ~-~, ~- for  the case  p =1/16, ~ = 0.05, X =0.313, and 5 = 0.695. A compar ison 
with a theore t ica l  computation (solid line) shows good agreement  even during oscil lation (pulsation) of the 
cavity. 
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Exper iment  is  a lso  compared  with a computat ion for  the case  fi =0.25, e =0.05, k =0.313, 5 = 0.695 
in Fig. 7. The theo ry  can be in good a g r e e m e n t  with exper iment  if  the ini t ial  ins tant  i s  chosen f rom the 
condition that  the ve loc i t i e s  in the computat ion and the exper iment  a re  equal at T o =0.12, f r o m  which the 
r ea l  p r o c e s s  s t a r t s  to be desc r ibed  by  the hydrodynamic  theo ry  of impact .  

Theo ry  and exper imen t  on the initial sect ion of the curve  of cavi ty  col lapse  up to the beginning of 
osci l la t ions  a r e  c om pa red  in Fig. 8 for  e =0.025, X =7.8 �9 10-2, and 5 =8.7 �9 10 -2 , with curve 1 for  fi =0.25 
and curve  2 for  fi =0.0625. 

Tes t  data for/3 =0.25, 5 =4.0 • 1.5, and different  va lues  of the p a r a m e t e r  X which c h a r a c t e r i z e s  the in- 
e r t i a l  f o r c e /  k =0.312 (point 1), k =0.555 (point 2), and k =1.25 (point 3) a r e  p r e s e n t e d  in Fig. 9 (upper pa r t  
of  the graph).  The  exper imen ta l  r e s u l t s  l ie  well  along one curve.  This  is  indeed na tura l  s ince the coun te r -  
p r e s s u r e  sharp ly  hinders  motion of the cavi ty  boundary only in the concluding s tage of col lapse.  

P r e s e n t e d  in the s ame  Fig. 9 (lower p a r t  of the graph) a r e  t e s t  data  fo r  fi =0.25, k =0.43 •  
4if ferent  va lues  of the p a r a m e t e r  p cha rac t e r i z ing  the influence of v i scos i ty .  The different  slope of the 
two groups  of t e s t s  can be explained by  the predominat ing  influence of the iner t ia l  fo rces  on the lower  curve  
(the points  5), where  the p a r a m e t e r  v ~0 .1  in (25) is st i l l  suff iciently smal l  as compared  with the o ther  co-  
eff icients .  As the influence of the v i s cos i t y  r i s e s ,  the slope of the col lapse  cu rves  d iminishes  (the group of 
points 5 where  v ~  1). 

Also not iced in the t e s t s  was  the dependence of the beginning of the origination of instabi l i ty  on the 
magnitude of the Reynolds n u m b e r  R , .  Th is  fact  can be explained by the pe r tu rb ing  influence of the growing 
boundary l aye r  on the iner t ia l  ve loc i ty  prof i le .  

P i c tu r ed  in Fig. 10 is  the exper imen ta l  dependence of the Reynolds n u m b e r  R ,  = p0U,h , / /~  at the t i m e  
of the  or iginat ion of ins tabi l i ty  (the fo rmat ion  of a cumulat ive  jet  on the cavi ty  boundary) as  a function of the 
p a r a m e t e r  

= i/e, lfR'~8,1h.i R = poatt./l~ 

where  8 ,  i s  the boundary- layer  th ickness .  

The  c h a r a c t e r  of the co l lapse  of a cyl indr ica l  cavity for  p =0.0625, ~ =0.05, and the impact  ve loc i ty  
w0= 2 m/see  can be obse rved  in Fig. 11, where  a s e r i e s  of f r a m e s  f r o m  an exposure  by a ZhLV-2 t ime  
magni f ie r  is  p r e sen t ed  (the num ber s  under the f r a m e s  denote the t i m e  in mic roseconds  f rom the beginning 

of the motion of the  cavi ty  boundary).  

Let  us note the  or igin  of  ins tabi l i ty  (a cumulat ive  jet) and the p r e s e n c e  of cavi tat ion bubbles  in the  
fluid, which poss ib ly  or ig inate  in the f i r s t  ins tants  of impac t  because  of tens ion  of the fluid during i n t e r a c -  
t ion of the side tmloading waves .  The c h a r a c t e r  of the flow nea r  the neu t ra l  l ine opposite to the p r e s s u r e  
gradient  i s  a lso influential  in this  s a m e  direct ion.  

The  authors  a r e  gra teful  to A. M. Kogan and L. V. Mos tovaya  for  p e r f o r m i n g  the computat ions.  
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